96 research outputs found

    Adhesion-Induced Lateral Phase Separation in Membranes

    Full text link
    Adhesion between membranes is studied using a phenomenological model, where the inter-membrane distance is coupled to the concentration of sticker molecules on the membranes. The model applies to both for adhesion of two flexible membranes and to adhesion of one flexible membrane onto a second membrane supported on a solid substrate. We mainly consider the case where the sticker molecules form bridges and adhere directly to both membranes. The calculated mean-field phase diagrams show an upward shift of the transition temperature indicating that the lateral phase separation in the membrane is enhanced due to the coupling effect. Hence the possibility of adhesion-induced lateral phase separation is predicted. For a particular choice of the parameters, the model exhibits a tricritical behavior. We also discuss the non-monotonous shape of the inter-membrane distance occurring when the lateral phase separation takes place. The inter-membrane distance relaxes to the bulk values with two symmetric overshoots. Adhesion mediated by other types of stickers is also considered.Comment: 13 pages, 9 PostScript figures included. To be published in Euro. Phys. J - E. Minor revision

    Permeation through a lamellar stack of lipid mixtures

    Full text link
    We study material transport and permeation through a lamellar stack of multi-component lipid membranes by performing Monte Carlo simulations of a stacked two-dimensional Ising model in presence of permeants. In the model, permeants are transported through the stack via in-plane lipid clusters, which are inter-connected in the vertical direction. These clusters are formed transiently by concentration fluctuations of the lipid mixture, and the permeation process is affected, especially close to the critical temperature of the binary mixture. We show that the permeation rate decays exponentially as function of temperature and permeant lateral size, whereas the dependency on the characteristic waiting time obeys a stretched exponential function. The material transport through such lipid clusters can be significantly affected around physiological temperatures.Comment: Accepted versio

    Growth kinetics of circular liquid domains on vesicles by diffusion-controlled coalescence

    Full text link
    Motivated by recent experiments on multi-component membranes, the growth kinetics of domains on vesicles is theoretically studied. It is known that the steady-state rate of coalescence cannot be obtained by taking the long-time limit of the coalescence rate when the membrane is regarded as an infinite two-dimensional (2D) system. The steady-state rate of coalescence is obtained by explicitly taking into account the spherical vesicle shape. Using the expression of the 2D diffusion coefficient obtained in the limit of small domain size, an analytical expression for the domain growth kinetics is obtained when the circular shape is always maintained. For large domains, the growth kinetics is discussed by investigating the size dependence of the coalescence rate using the expression for the diffusion coefficient of arbitrary domain size.Comment: 16pages, 3 figure

    Dynamics of a polymer chain confined in a membrane

    Full text link
    We present a Brownian dynamics theory with full hydrodynamics (Stokesian dynamics) for a Gaussian polymer chain embedded in a liquid membrane which is surrounded by bulk solvent and walls. The mobility tensors are derived in Fourier space for the two geometries, namely, a free membrane embedded in a bulk fluid, and a membrane sandwiched by the two walls. Within the preaveraging approximation, a new expression for the diffusion coefficient of the polymer is obtained for the free membrane geometry. We also carry out a Rouse normal mode analysis to obtain the relaxation time and the dynamical structure factor. For large polymer size, both quantities show Zimm-like behavior in the free membrane case, whereas they are Rouse-like for the sandwiched membrane geometry. We use the scaling argument to discuss the effect of excluded volume interactions on the polymer relaxation time.Comment: 13 pages, 6 figures, Accepted for publication in Eur. Phys. J.

    Drag coefficient of a liquid domain in a two-dimensional membrane

    Full text link
    Using a hydrodynamic theory that incorporates a momentum decay mechanism, we calculate the drag coefficient of a circular liquid domain of finite viscosity moving in a two-dimensional membrane. We derive an analytical expression for the drag coefficient which covers the whole range of domain sizes. Several limiting expressions are discussed. The obtained drag coefficient decreases as the domain viscosity becomes smaller with respect to the outer membrane viscosity. This is because the flow induced in the domain acts to transport the fluid in the surrounding matrix more efficiently.Comment: 8 pages, 5 Figures. Accepted for publication in Eur. Phys. J.
    • …
    corecore